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ABSTRACT 

 

Automation of grinding of metalcastings is desirable for many reasons. The 

major reasons are dangerous working conditions, low productivity, and inconsistency 

in human operations.  As an approach to the automating grinding process, a gantry-

driven grinding machine is proposed to manipulate an industrial hand grinder and 

control the grinding force applied to the work piece. To increase the material removal 

rate of the grinding machine, a grinding force control method is brought forward. This 

method suggests that the normal grinding force should be controlled to a desired 

constant value. A double closed-loop grinding force control system is designed to 

perform the grinding force control.  

This thesis develops the models of the servo system and the grinding process. 

Based on these models, a force controller is designed with the ability of tracking the 

desired force set point. The proposed closed-loop grinding force control system is 

verified by simulation. 
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Chapter 1 Introduction 
 

1.1 General Introduction 

This thesis will focus on the grinding of metalcastings. Most metalcastings require 

some grinding after they are shaken out of the molds. This grinding is used to remove the 

riser and gating contacts, possibly smooth the parting line, and correct any other surface 

anomalies such as burnt on sand. In this type of grinding process, the material removal is 

done via tedious, time-consuming manual operations such as hand grinding. Manual 

operations can take advantage of a skilled operator with experience and be very flexible. 

However, humans can also be inconsistent and less efficient. To increase the consistency 

and efficiency of grinding process and improve the quality of grinding surface, a three-

axis gantry driven grinder with closed-loop grinding force control is proposed. This thesis 

addresses the problem of using a gantry to manipulate an industrial hand grinder to 

control the normal grinding force applied to a work piece.   

The following sections introduce the structure of the gantry grinding machine, the 

relationship between grinding force and material removal rate, control theory related 

concepts, and the software MATLAB.  

 

1.2 Proposed Grinding System 

Figure 1-1 [2] shows the structure of the proposed automatic grinding system. The 

operator uses a joystick to control the gantry to move in X and Y directions 

(perpendicular to vertical grinding force). The operator also sets the grinding force 

according to the material, grinder wheel material, grinder rotary speed, etc. The control 

algorithm combines the commands from the operator and the feedback from the sensors 
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to decide the movement of the grinder in Z direction (vertical) to apply constant normal 

grinding force to the work piece, and perform appropriate grinding. 

 

 

Figure 1-1 Structure of the Semi-Automatic Grinding System 

 

The mechanical system is comprised of a three-axis gantry system, which 

corresponds to three degrees of freedom in the x, y, and z axes. The prototype of the 

gantry system is showed in Fig 1-2. The movements of the system are driven by servo 

motors. The force application device is attached to the gantry system. The mechanical 

part of the system is a gantry system driven by three servo motors.  

 

 

Figure1-2 Prototype of the Gantry System 
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A spring and damper system is used to apply the vertical force. Figure 1-3 [2] 

shows the structure of the force application device (head of grinder). This device is 

mounted on the gantry system with movement on the X and Y axes. 

 

 
 

Figure 1-3 Force Application Devices 
 

In the design, the compression spring can be controlled to generate the desired 

force on the part surface. The other components are a damper to reduce vibration of the 

system, and a linear encoder to measure the deflection of the spring that can be used to 

calculate the actual force applied. The spring is compressed in a housing initially. With 

the constraint of the housing the spring can only be compressed more. This device can 

only provide vertical force, so the anomalies should be positioned generally facing up to 

obtain better material removal results.  

 

1.3 Grinding Force and MRR 

1.3.1 Relationship between normal grinding force and material removal rate (MRR) 

Several grinding force models have been proposed and recent related models were 

summarized by Tönshoff [9]. In some of these models material removal rate is related to 

normal grinding force. Hahn and Lindsay suggested that a linear relationship exists 

between the material removal rate and the normal force intensity [10].    

  Z F Fw w n no  ( )                                               (1-1) 
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Where:  

Zw  - Material removal rate per unit width 

 w  - A constant of proportionality  

Fn  - Normal grinding force per unit width 

Fno  - Threshold normal grinding force 

Recently Ludwick et al. [11], and Jenkins and Kurfess [12] suggested the model  

Q K F F Vp N TH ( )                                                (1-2) 

Where Q is material removal rate, FN is normal force, FTH is the threshold value of FN, V 

is the relative speed and  is a proportion constant.  Kp

These models suggest a linear relationship between normal grinding force and 

material removal rate. This linear relationship implies that a higher normal grinding force 

(Fn) being applied during the grinding process leads to a higher MRR which can improve 

the efficiency of the grinding machine. But normal grinding force Fn is limited by some 

conditions. For example, to prevent damage of the grinding wheel, the grinding force 

needs to be controlled below a critical value.   

 

1.3.2 Increasing MRR  by control of the grinding force  

The objective in coarse grinding (compare to surface grinding) is rapid material 

removal with the desired work-piece size and shape. The performance of coarse grinding 

depends mainly on the material removal rate (MRR). Grinding force is a crucial issue in 

coarse grinding. A large depth of cut will cause a high grinding force. This can lead to 

many problems, such as grinding chatter, burn and exploding grinding wheels. In a coarse 

grinding process, the variance of normal grinding force is apparent due to the unevenness 
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of the part surface or unroundness of the grinder wheel. To prevent from burning the 

work piece or damaging the grinder, only a smaller average Fn can be applied on the part 

surface. Figure 1-4 shows the hypothetical grinding force variance with and without force 

control. The upper limit of the grinding force is to avoid the burning of work piece and 

damaging of the grinder. If the grinding force is controlled to a constant value, 

hypothetically the magnitude of variance of normal grinding force Fn will be smaller than 

without grinding force control. So a bigger average Fn can be applied during the grinding 

process. Since MRR has a linear relationship with Fn, a bigger Fn leads to a higher MRR. 

Therefore grinding force control could increase MRR compared to the case without 

grinding force control. 

 

Average Fn 
with force 

Upper Limit 

Grinding force without force control 

Grinding force with force control 

Time 
Figure 1-4 Grinding Force With and without Force Control 

Grinding force 
Fn

Average Fn 
Without 

force control 
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1.4 Related Concepts 

In this thesis, the development of the models and design of the controllers are 

based on several important concepts and conclusions related to control theories [13]. For 

example, transfer function, root locus etc.  This section presents those concepts and 

conclusions related to this thesis.   

Transfer Function 

A transfer function is a mathematical representation of the relation between the 

input and output of a LTI (linear time-invariant) system.  

For example, a system has input signal x(t) and output signal y(t), the transfer 

function of this system is the linear mapping of the Laplace transform of the input X(s), to 

the output Y(s): 

 

)()()( sXsTsY                                                    (1-3) 

or 

)(

)(
)(

sX

sY
sT 

                                                     (1-4) 

where T(s) is the transfer function of this system. 

 

Laplace Transform 

The Laplace transform is a useful mathematical tool which can significantly 

reduce the effort required to solve and analyze linear differential equation models. A 

major benefit is that it converts ordinary differential equations to algebraic equations, 

which can simplify the manipulations required to obtain a solution or perform an analysis. 

The Laplace transform of a function  is defined as  f t( )

http://en.wikipedia.org/wiki/LTI_system
http://en.wikipedia.org/wiki/System_analysis
http://en.wikipedia.org/wiki/Laplace_transform


www.manaraa.com

  7

F s f t f t e dtst( ) [ ( )] ( )  


0

                                     (1-5) 

where  is the symbol for the Laplace transform, s is a complex independent variable, 

 is the function of time to be transformed. The inverse Laplace transform 

 operates on the function 

F s( )

[  1

f t( )

f t( ) F s( )] F s( )  and converts it to . f t( )

The s-plane is a mathematical domain where processes  are viewed as equations in 

the frequency domain instead of in the time domain.  

 

Closed-loop control system 

Systems that utilize feedback signal are called closed-loop control systems; an 

open-loop control system doesn't use feedback. 

 

Zero, Pole and System Stability 

If the transfer function of a system can be expressed as T s P s Q s( ) ( ) / ( ) , P(s) is 

the denominator of T s  and Q(s) is the numerator of , solutions of the equation ( ) T s( )

Q s( )  0  are called the poles ofT s . Solutions of the equation ( ) P s( )  0  are called the 

zeros of T s .  ( )

In control theory stability often means that for any bounded input over any 

amount of time, the output will also be bounded. If a system is stable, the output cannot 

become infinite if the input remains finite. According to the control theory, a system is 

stable if all of its poles locate in the left-hand side of the s-plane. An inexact explanation 

of this conclusion is given as below: assuming the out put of a system is given by  

y t Ae Bet t( )                                                   (1-6) 

where coefficients A, B, ... depend on the parameters of the system, exponents α, β, ... 

depend on the poles of the system. If one of the exponents has a positive real part , then part of the 

http://en.wikipedia.org/wiki/S-plane
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solution of y(t) will increase without bound as t increases and the system is seen to be unstable 

(since   as t  if the real part of α is positive). e t    

For example, a system has a transfer function  

 T s
s s

( )
( )(


 

10

1 10)
                                                 (1-7) 

System has a pole located in right hand side of the s plane (s =1).  The Laplace 

transform of unit step response of the system is  

Y s T s X s
s s s s s s

( ) ( ) ( )
( )( )

 
 

 





10

1 10

1 1
10

11
1

1

11
10

                   (1-8) 

taking the inverse Laplace transform, the unit step response of the system is 

y t e et( )    1
10

11

1

11
10t                                             (1-9) 

as , e , t   t   y t( )   , so system is unstable. 

 

Root Locus 

The root locus is the path of the roots of the characteristic equation traced out in 

the s-plane while a system parameter (typically a gain) is varied. The characteristic 

equation is defined as the denominator of the transfer function. The root locus is a tool for 

analyzing single input single output (SISO) systems. 

For example, a system is defined by the transfer function G(s) as in Fig 1-5. The 

system is controlled using a proportional controller in which the input to the system to be 

controlled is proportional to the difference between the input, R(s), and the output, C(s). 

 

http://en.wikipedia.org/wiki/Dynamic_systems
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K G(s)
R(s) C(s)

Figure 1-5 Block Diagram of an Example Control System 

 

The closed loop transfer function of the system shown is 

T s
C s

T s

KG s

KG s
( )

( )

( )

( )

( )
 

1
                                     (1-10) 

The characteristic equation is defined as  

1 0 KG s( )                                         (1-11) 

Root locus of the closed loop system is the path of solutions of equation (1-11) as 

K changes from 0 to ∞.  

 

Bode Plot 

A Bode plot describes the gain and phase of a system as a function of frequency. 

It is a combination of a Bode magnitude plot and Bode phase plot. A Bode magnitude 

plot is a graph of log magnitude versus frequency to show the frequency response of a 

LTI (linear time-invariant) system. A Bode phase plot is a graph of phase versus 

frequency, also plotted on a log-frequency axis, to evaluate how much a frequency will be 

phase-shifted between output and input.  

For example, the open loop transfer function of a system is given by G(s). The 

frequency response of the system is given byG j( ) . G j( )  can also be written as 

G j A e j( ) ( ) ( )                                                (1-12) 

http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency_response
http://en.wikipedia.org/wiki/LTI_system_theory
http://en.wikipedia.org/wiki/LTI_system
http://en.wikipedia.org/wiki/Phase_%28waves%29
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Bode magnitude plot can be drawn from A( ) as   0 ( Normally the 

magnitude axis is expressed as decibels: 20 10 log ( )A  ); Bode phase plot can be drawn 

from  ( ) as   0 .  Magnitude crossover frequency c  is defined as the frequency 

at which the open loop transfer function has unity magnitude (20 010 ( )A clog  ). 

These plots show the stability of the closed-loop system through the following 

conclusions. 

If open loop system’s  ( )c   180 , then closed-loop system is stable. 

The distance of the phase  ( )c  above −180° is called the phase margin. It is a 

measure of stability.  

 

Step Response 

The step response of a system is the output of the system produced by a unit step 

input. It is a common analysis tool used to determine system performance. The step 

response can be described by the following quantities. 

    * overshoot 

    * rise time 

    * settling time 

The overshoot is the maximum swing above final value. Overshoot represents a 

distortion of the signal. The settling time is the time for departures from final value to 

sink below some specified level, say 10% of final value. Rise time is the time required for 

the output to change from a specified low value to a specified high value, say 90% of the 

final value.  

 

Matlab and Simulink 

http://en.wikipedia.org/wiki/Decibel


www.manaraa.com

  11

In this thesis, the proposed closed-loop grinding force controller is designed by 

using Matlab and verified by Simulink. A brief description of Matlab and Simulink is 

given as bellow.  

Matlab is a language for technical computing. It integrates computation, 

visualization, and programming in an easy-to-use environment where problems and 

solutions are expressed in common mathematical notation. Simulink, integrated with 

Matlab, is a software package for modeling, simulating, and analyzing dynamic systems. 

It provides a graphical environment that let one design, simulate, implement, and test 

dynamic systems. 

 

1.5 Overview of the Force Control System 

Fig 1-6 shows an overview of the force control system. There are two closed loops 

in this system. The inner loop is the servo system, which tracks the position command 

from the Force Controller. The outer loop performs the constant grinding force control 

which compares the force set point and force feedback signal and calculates the z position 

for the inner loop.  

 

    Servo  
Controller 

    Force  
Controller 

Grinding 
 Process 

Grinding  
   Force 

Motor

Position

Servo System 

Inner Loop 

Outer Loop 

Figure 1-6 Overview of Force Control System 

 



www.manaraa.com

  12

The remainder of this thesis is organized as follows: 

 Chapter 2 derives the model of servo system and design of servo controller;  

 Chapter 3 derives the model of grinding process;  

 Chapter 4 presents the design of grinding force controller and simulation of force 

control system;  

 Chapter 5 draws conclusions and discusses future work. 
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Chapter 2 Derivation of the Model for the Servo System and 

Design of the Servo Controller 

 

This chapter derives the model of servo system and presents the design of the 

servo controller. The servo system (position control) is the inner loop of the force control 

system. Outside of it is the outer loop which controls the grinding force to be a desired 

constant value. 

 

2.1 Derivation of the Model for the Servo System  

 

In Fig 1-3, a ball screw actuator consists of several force application devices. The 

head of grinder (those parts mounted on the nut) can be moved along Z axis (in vertical 

direction). To control the grinding force, the head of grinder needs to be moved up and 

down according to the measure of the grinding force. A servo system is utilized to control 

this motion of the head of grinder.   

A servo system consists of controllers, drives, motors and feedback devices. Here 

is a graphical representation of a typical servo system: 

 

 

Figure 2-1  Pictorial Diagram of a Typical Servo System 

 

The controller analyzes the errors of feedback signal and set point signal and 

sends a command signal to the amplifier to correct for errors. The servo drive (amplifier) 
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receives the command signal from a controller, amplifies the signal, and transmits electric 

current to a servo motor. The motor converts the current that comes from the servo drive 

into mechanical motion. Feedback devices are used to measure the position or velocity of 

the motor or load. 

 

The proposed servo system consists of a motor, drive (ZOH, DAC, and Amp-

described below), encoder and the PID controller. The elements are shown in Fig 2-2. 

This section presents the derivation of transfer functions of each element. 

 

PID ZOH DAC Amp Motor 

Encoder

Drive 

H(s) 

Kf 

Kd Position M(s) 
Position 

Figure 2-2 Block Diagram of a Servo System 

 

 

 

Amplifier and Motor 

 

The motor amplifier is configured in current drive mode. It generates a current I, 

which is proportional to the input voltage. It is a current source with a gain of 

[Amp/Volt]. The transfer function relating the input voltage V to the motor position P 

is  

aK

2
)(

Js

KK

V

P
sM ta  [rad/V]                                   (2-1) 

 

Where   and J are the motor and system parameters  tK

http://en.wikipedia.org/wiki/Servo_motor
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  Current amplifier gain [Amp/Volt]  aK

tK  Torque constant [N·m/Amp] 

J System moment of inertia [kg·m²] 

 

For this system, the parameters are selected as below. 

4102

1.0

2






J

K

K

t

a

 

 

The transfer function of amplifier and motor becomes: 

 

2

1000
)(

sV

P
sM 

                                              
(2-2) 

 

Encoder 

 

The encoder generates N pulses per revolution. It outputs two signals, Channel A 

and B, Which are in quadrature. The model of the encoder can be represented by a gain of  

2
4N

K f  [count/rad]                                           (2-3) 

where 

 

N Encoder line density [count/rev] 

 

If the line density of encoder is 1000 [count/rev], the transfer function of encoder is 

 

637
2

10004





fK
                                             

(2-4) 

DAC 

The DAC converter converts a digital number to an analog voltage. The input 

range of the numbers is 65536 and the output voltage is +/- 10V or 20V. Therefore, the 

effective gain of the DAC is  
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0003.0
65536

20
dK [Volt/count]                               (2-5) 

 

ZOH 

 

The ZOH, or zero-order-hold, represents the effect of the sampling process, where 

the motor command is updated once per sampling period. The effect of the ZOH can be 

modeled by the transfer function  

1
2

1
)(




s
T

sH

                                                 

(2-6) 

where  

 

T --- sampling period [s] 

 

For this system, sampling period is 1ms, so the transfer function of ZOH becomes: 

 

2000

2000
)(




s
sH

                                               
(2-7) 

 

Plant Transfer Function 

The combination of all the elements above is the plant (the combination of process 

and actuator.) transfer function,  which is )(sL

 

)2000(

10822.3

2000

2000
0003.0637

1000

)()()(

2

5

2











ss

ss

sHKKsMsL df

                                 
(2-8)                        
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2.2 Design of the Servo Controller  

 

To achieve the position control, a servo controller (PID controller) is added in 

series.  A proportional–integral–derivative controller (PID controller) is a feedback 

control mechanism which is commonly used in industrial control systems. A PID 

controller corrects the error between a process feedback and a desired setpoint by 

calculating a corrective output that can adjust the process accordingly. The PID controller 

calculation includes three separate parameters; the Proportional, the Integral and the 

Derivative values. The Proportional value determines the reaction to the current error 

which can reduce the rise time and steady-state error, the Integral value will have effects 

of removing steady-state error, and the Derivative value will increase the stability of a 

system. The weighted sum of these three correction values is used to adjust the process.  

The closed loop system is showed in Fig 2-3. The open loop transfer function 

 becomes )(sGo

 

)()()( sLsGsG PIDo                                             (2-9) 

 

 

Servo Controller
         GPID (S)  

Plant 
 L(s) 

-+ 

Figure 2-3 Servo System 

Position Position 

                   
 

Fig 2-4 presents the root locus of the system without a controller. 

 

http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Process_variable
http://en.wikipedia.org/wiki/Setpoint_%28control_system%29
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Figure 2-4 Root Locus of Plant 

 

Parts of the root loci extend to the right hand side s-plane, so this system is not 

stable. Adding a PID controller to the system, the path of the root loci can be shifted 

which leads to the change of the performance of the system. To stabilize the system and 

obtain a closed-loop step response with small overshoot and fast rise time, a PID 

controller is added in series.  

The Bode plot of plant L(s) is showed in Fig 2-5. From the plot, some important 

data can be read. The magnitude of L(s) at the frequency c  = 500 is -62.6 dB and the 

phase of L(s) at the frequency c  = 500 is -194 deg. 
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Figure 2-5 Bode Plot of Plant 

 

The parameters of the objective controller affects the performance of servo system, 

they also affects the performance of the whole force control system. As a start point they 

are selected by experiential data. They might need to be modified depending on the 

simulation of the whole system. This process repeats until the performance of both servo 

system and the whole force control system meet the requirements. This thesis only 

presents the determined parameters. The servo controller is selected so that 

has a crossover frequency (the frequency at which the magnitude of the open loop 

transfer function is unity) of 500 rad/s and a phase margin (a measure of stability of a 

feedback system, it is the phase difference between the phase of open loop transfer 

function at crossover frequency  and     -180° ) 70 degrees.   

)(sGPID

)(sGo

This requires that 

 

  



110)500(arg

1)500(

jG

jG

o

o

                                   
(2-10) 
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So must have magnitude of  )(sGPID

1349
0007416.0

1

)500(

)500(
)500( 

jL

jG
jG o

PID

                 

(2-11) 

and a phase  

 

     





84194110

)500(arg)500(argarg jLjGG oPID

                        (2-12) 

 

A PD controller is used to provide the correction. 

 

sDPsGPID )(                                             (2-13) 

 

so 
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The solution of these equations leads to  

                    

 

1349cos84 141P         (2-15) 

1349sin84
2.68

500
D


                                      (2-16) 

( ) 141 2.68PIDG s P sD s                                  (2-17) 

5

2

3.822 10 (141 2.68 )
( ) ( )

( 2000)o PID

s
G L s G s

s s

 
 


                  (2-18) 

This PD controller equivalent to add a zero to the open system and the zero 

is 6.5268.2/141 s . The step response of closed-loop system is showed in Fig 2-6 
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Figure 2-6 Closed Loop System Step Response with PD Controller 1 

 

From Fig 2-5, 90% rise time is read as 0.00275 second, overshoot is 8.35%, and 

settling time is 0.0333 second. These parameters are used as basic data to tune system. 

These data would satisfy the requirement of the servo system and help the outer loop to 

obtain a desired response. Open and closed-loop transfer functions of the servo system are 

as below: 

5

2

3.822 10 (141 2.68 )
( ) ( )

( 2000)o PID

s
G L s G s

s s

 
 


                      (2-19) 
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(2-20) 

 

The open loop system root locus with PD controller is presented in Fig 2-7. With 

the correction of the PD compensator, now all loci locate in left hand s-plane which 

means the closed loop system is stable.  
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Figure 2-7 Root Locus of Open Loop System with PD Controller 2 

 

The open loop system with PD controller is a second order system, so for step and 

ramp input, there is no steady state error in the output.  
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Chapter 3 Derivation of the model of Grinding Process 
 

3.1 Grinding Force Equation 

In designing grinding system, grinding force models are necessary to build up the 

dynamic model of the system. Werner analyzed the relationships of grinding force and 

other parameters related to the grinding process and suggested the following equation [5]. 

For surface grinding, the normal component of the total grinding force per unit of 

grinding width is given by: 

 

     

 

2 1
1

1

1
(1 ) (1 )

2
(1 )

w
n

s

v
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v
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n n

n


  

 

 


 

   
 

   

                                     

(3-1) 

 

where 

nF   normal grinding force per unit of grinding width 

K  proportionality factor 

1C  cutting edge density 

  exponential parameter of grinding force equation 

wv  work speed 

sv  wheel speed 

  exponential parameter of grinding force equation 

a  depth of cut 

D  equivalent wheel diameter 

n  exponent describing cutting force versus chip cross section 

  exponential coefficient 

  exponential coefficient 

 

The value of the exponential parameter of grinding force equation   is in the range of  
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0.5 1  . Equation (3-1) describes the grinding force as a function of all 

relevant parameters.  

To derive the model of grinding process for the controller design, only depth of 

cut  is considered as a variable, equation (3-1) can be simplified as  a

 

F K an F
'  

                                                 
(3-2) 

where  

FK  Proportionality factor 

In this model, the surface of the work piece will be considered as roughly 

horizontal, so the normal grinding force is in vertical direction. Equation (3-2) suggests a 

none-linear relationship between normal grinding force and depth of cut. To simplify the 

model to a linear relationship, the ratio of the normal grinding force to depth of cut is 

assumed to be a constant value  [1].  2K

aKFn 2                                                        (3-3) 

So the grinding process could be modeled as a spring with a spring constant  2K

 

3.2 Model of Grinding Process 

For the feed speed in X and Y directions, with the encoder feedback signal the 

motion control circuit will be configured as a position and speed closed-loop controller. 

This is a classic application for the motion control card and this thesis will not cover the 

application of the feed control.  

For the grinding force, while the surface of anomaly changes or the surface of the 

part changes, the grinding force is controlled to keep a constant value by adjusting the Z 

position of the head of grinder (the parts mounted on the nut of the grinding force 

application device showed in Figure 1-3).  A model of grinding process is needed for the 
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design of the controller. This model describes the dynamic relationship between the Z 

position and the grinding force.  

 

In Fig 3-1 symbols are defined as following: 

1K --- spring constant 

2K --- equivalent spring constant of grinding process 

m --- mass of grinder head 

b --- damping constant 

z(t) --- vertical direction displacement of gantry 

p(t) --- vertical direction displacement of grinding wheel  

 

 

p 

K1 b 

z 

K2 

m

K1 b 

K2 

m 

 

 

 

 

 

 

 

 

 

 

 

 

3-1 b After head of grinder moves 
a displacement in Z direction 

Workpiece Workpiece

3-1 a Initial position of 
head of grinder 

 

 

 

Figure 3-1 Modeling of the Grinding Process 
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The displacements z, p are measured from a static equilibrium position. Assuming 

the deformations of spring 1 and spring 2 are  and  respectively. x1 x2

 

K x mg K x1 1 2 2                                                                   (3-4) 

 

Assuming the gantry moves a displacement z in vertical direction, and the 

grinding wheel moves a displacement p in the vertical direction. The dynamic function of 

the grinder is given by: 

 

K x z p mg K x p b z p mp1 1 2 2( ) ( ) (   )                        (3-5) 

 

Because z and p are defined in a static equilibrium position, the constants can be 

canceled by substituting  for . K x mg1 1  K x2 2

The equation (3-5) converts to 

 

K z p K p b z p mp1 2( ) (   )                                             (3-6) 

 

Incremental grinding force  can be calculated as f

f K p 2                                                               (3-7) 
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f

K
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2

into (3-6) 
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                                    (3-8) 

bz K z
K
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2

1 2

1
                                   (3-9) 

take the Laplace transform of both sides of equation (3-9) 

( ) ( ) ( ) ( )bs K Z s
K

ms bs K K F s    1
2

2
1 2

1
                            (3-10) 
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Where 

F(s) --- Laplace transform of f(t) 

Z(s) --- Laplace transform of z(t) 

z(t) is selected as the input signal of grinding process and f(t) is selected as output 

signal. The transfer function of the grinding process G  is given by: sp ( )

G s
F s

Z s

K bs K

ms bs K Kp ( )
( )

( )

( )
 


  

2 1
2

1 2

                                    (3-11) 

Block diagram of the grinding process is shown below in Fig 3-2. 

 

 

 

 Gp(s)
F(s)Z(s)

 

 

 

Figure 3-2 Block Diagram of Model of the Grinding Process 
 

To simplify the design of the controller, the damper is ignored, so b=0. Here the 

parameters are estimated as:  

mNK

mNK

kgm

/1022.2

/109

15
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



 

So the transfer function of the grinding process could be described by the 

following equations. 

G s
K K

ms K K

s

p ( )
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.


 
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

 

2 1
2

1 2

11

2 6

198 10
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 (3-13) 

 

Ball Screw 
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Ball screw transfers radian position of the motor shaft to z position, the transfer 

function,  [m/rad], is BK

4108 BK     (about 1/5 inch per revolution)
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Chapter 4 Design of Controller and Simulation Results 
 

This chapter presents the design of grinding force controller which closes the 

outer loop of the grinding force control system. The plant of the control system includes 

servo system and the grinding process.  

 

4.1 Design of Grinding Force Controller 

Figure 4-1 describes the components of the whole grinding force control system. 

To stable the whole system and obtain a desired performance, this section will determine 

the grinding force controller . The transfer functions of servo system and grinding 

process have been determined in chapter 2 and 3. Plant (servo system and grinding 

process) transfer function can be derived based on these transfer functions.  A design tool 

(SISOTOOL) is used to find the grinding force controller. 

Gc

 

PID ZOHGc DAC Amp Motor Grinding 
 Process 

Encoder

Grinding Force
Controller Servo System 

Figure 4-1 Grinding Force Control System 

 

 

 

As presented in chapter 2 and 3, the transfer function of plant (servo system and 

grinding process) includes: 

Servo system transfer function (same as equation (2-20)):  
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Grinding process transfer function (same as equation (3-11)): 
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So the transfer function of the plant will be: 
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(4-3) 

 

 

The open loop system has one real zero  

61.52z  

and three real poles  

11501 p  

5.7902 p  

27.593 p  

and a pairs of complex poles 

ip 768.3905,4   

Fig 4-2 and Fig 4-3 show the root locus and unit step response of the open loop 

system. As mentioned in Chapter 1, two of the loci extend to right hand side of s- plane 

which means the system is not stable. 
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Figure 4-2 Root Locus of Plant 

 

 

 

Figure 4-3 Step Response of Open Loop System without Controller 
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SISOTOOL (single input single output system design tool) is used to find the 

controller. To increase the type of system, a pure integrated unit is added. To stable the 

system, two complex zeroes are added.  

js 37870   

And a real zero 190s is added also to stable the system.  

Under the effect of the these zeros and poles, the new open loop system loci 

presented in Fig 4-4 now all locate in the left hand side s-plane.  

 

 

 

 

Figure 4-4 Locus Diagram of Open Loop System with Compensator 

 

 

Transfer function of Compensator is as below: 

 
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sss
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(4-4) 
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Reading from the Bode plot of the open system with the compensator, system is a 

stable loop and has a phase margin of 47.6° at crossover frequency 1710 rad/sec.  

 

Figure 4-5 Bode Plot of Open Loop System with Compensator 

Step response of the force control system with this compensator is showed in Fig 

4-6 
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Figure 4-6 Step Response of Closed-Loop System with Compensator 

 

From Fig 4-6, 90% rise time is read as 0.000784 second, overshoot is 16.4%, and 

settling time is 0.0256 second. 

 

4.2 Simulation Results 

 
Simulation of the grinding force control system is executed in the Simulink 

environment which is a build-in software package of Matlab. 

Simulation block diagram is showed in Fig 4-7.  

 
Figure 4-7 Simulation Block Diagram of Grinding Force Control System 
Unit step response of the grinding force control system is showed below in Fig 4-8.  

This response shows that system is stable and the steady state error is zero which means 

the system can follow the input signal. The overshoot is about 8% and rise time is about 

0.01 second. Settling time is about 0.05 second. Results show that grinding force can be 

controlled to a desired value.  
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Figure 4-8 Simulation Result-Unit Step Response 

 

 

Detailed simulation block diagrams of PD inner loop controller and the grinding 

force controller are presented in Fig 4-9 and Fig4-10 respectively. 

 

 

Figure 4-9 Block Diagrams of PD Controller 
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Figure 4-10 Block Diagrams of Grinding Force Controller 
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Chapter 5 Conclusion and Future Work 
 

In this thesis, a three-axis gantry driven grinding system has been proposed. To 

increase the material removal rate, the grinding force control method is brought forward. 

A model of servo system is derived and a servo controller is designed. This paper also 

presents a model of grinding process and the design of a grinding force controller. The 

force control system is simulated using the commercial software Simulink package. The 

simulation result shows that the proposed double closed-loop force control system can 

follow a step force input.  

Although the controller remained stable for a wide range of conditions, the 

robustness of the controller to disturbances and parameter variations should be 

determined. An analysis of feed-forward or no-linear controller could be performed to 

obtain a better performance. More experimentations or simulations could be performed to 

support the hypothesis that grinding force control increases MRR. 



www.manaraa.com

  38

 

Reference 

 

1. C. H. Liu, A. Chen, Y.T. Wang, C.C. A. Chen, 2004, Modelling and simulation of an 
automatic grinding system using a hand grinder, Int J Adv Manuf Technol (2004) 23: 
874–881 

 
2. D. Wang, 2007, A general material removal strategy based on surface sampling and 

reconstruction on unknown objects, PhD dissertation, Iowa State University   
 

3. Y.T. Wang, Y.J. Jan 2001 Grinding force models in finishing processes, 2001, 
IEEE/ASME International Conference on Advanced Intelligent Mechatronics 
Proceedings ,B-12 July 2001 Como. Italy 

 
4. Motion control – NI motion user manual, 2006 National Instruments 

 

5. G. Werner, 1978,  Influence of Work Material on Grinding Forces, CRIP, Volume 27, 
No. 1,1978,p. 243-248 
 

6. C. H. Liu, A. Chen, Y.T. Wang, C.C. A. Chen, 2005, Grind force control in an 
automatic surface finishing system, Journal of Materials Processing Technology 170 
(2005) 367-373 

 
    
7. M.H.Liu, 1995, Force-controlled fuzzy-logic-based robotic deburring, Control Eng. 

Practice, Vol3, No. 2,pp189-201,1995 
 
8. Y.T. Wang , Y.J.Jan, 2000 A robot assisted finishing system with an active torque 

controller, Proceedings of the 2000 IEEE international conference on robotics & 
automation, San Francisco, CA, April 2000  

 
9. HK Tönshoff, J Peters, I Inasaki, T Paul (1992) Modeling and simulation of grinding 

processes. Ann CIRP 41:677-688 
 
10. RS Hahn, RP Lindsay (1971) Principles of grinding, part 1: Basic relationships in 

precision grinding. Machinery, pp 55-62 
 
11. SJ Ludwick, HE Jenkins, TR Kurfess (1994) Determination of dynamic grinding 

model. Trans ASME Dyn Syst Contr 55:843-849 
 
12. HE Jekins, TR Kurfess (1996) Optimization of real-time multivariable estimation in 

grinding. Trans ASME Dyn Syst Contr 58:365-370  
 
13. Benjamin C. Kuo  (1994) Automatic Control Systems 7th edition, Prentice Hall 
 



www.manaraa.com

  39

Acknowledgements 

 

Many people contributed to the work presented in this thesis and essentially made 

the thesis possible at all. 

First of all, I would like to thank my advisor, Dr. Frank Peters, for his inspiring 

way to guide me to a deeper understanding of the knowledge on material removal process. 

Dr. Peters provides me with great details of the material removal problem in the 

metalcasting grinding operation. I really appreciate the discussions with Dr. Frank which 

are always productive and innovative. I am also grateful to Dr. Molian. My gratitude also 

goes to other students and colleagues at the Department of Industrial and Manufacturing 

Systems Engineering for developing a good working atmosphere, especially Danni Wang, 

Brian Harwood, Xiaoming Luo, and Fanqi Meng, for their assistance and companionships 

throughout my work. 

Last but not least, I am greatly grateful to my wife, my baby girl and my family 

for their understanding and support during the entire period of my study. 


	2009
	Closed-loop force control for a semi-automatic grinding system
	Lei Yu
	Recommended Citation


	Closed-Loop Force Control for a Semi-Automatic Grinding System

